

Dave Wilson Director of Academic Programs National Instruments

Do Engineering ni.com/academic	1	NATIONAL INSTRUMENTS
----------------------------------	---	--------------------------------

Do Engineering | ni.com/academic

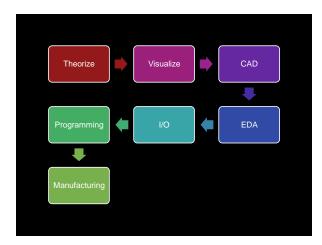
Dave Wilson

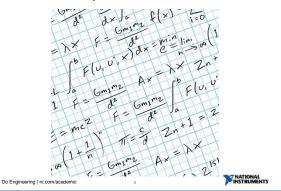
Steps in the Technology Design Process

Director of Academic, Training and Certification Programs National Instruments Corporation

> MATIONAL INSTRUMENTS

Engineering Grand ChallengesArarce half
normatics
Parker or heating
Parker or heating
Parker

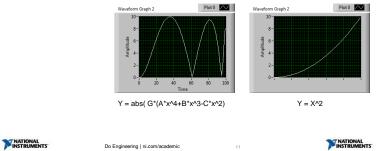

Manage the

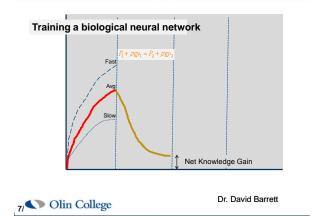

"The ensemble is the function..."

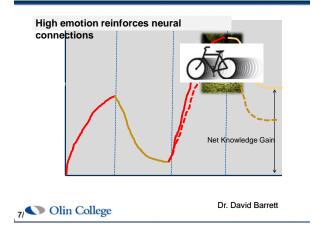
Dr. Alberto Sangiovani Vincentelli University of California at Berkeley

Learn the Theory

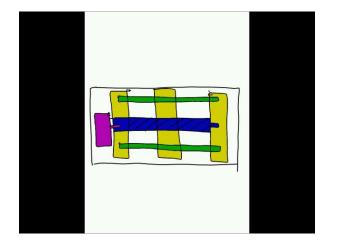
Theory is Important

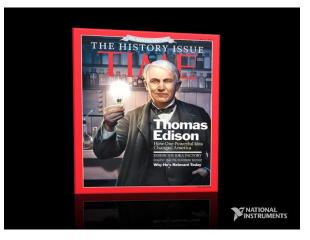

P Wave
$$\begin{split} P &= I^2 R = \frac{V^2}{R}, \\ v_p &= \sqrt{M/\rho}. \\ \text{S Wave} \\ \beta^2 &= \frac{\mu}{\rho}. \\ C(s) &= \left(K_P + K_I \frac{1}{s} + K_D s\right). \\ \text{PID} \\ \\ \text{De Engineering | nicom/academic} \\ y \end{split}$$


Using PID...

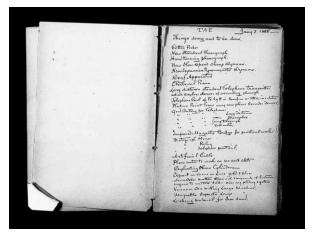

Do Engineering | ni.com/academic

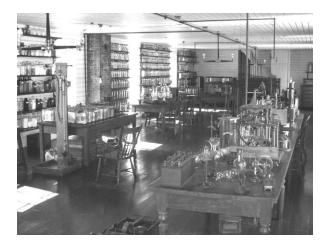
Math... the shape maker

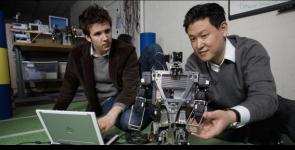




Do Engineering | ni.com/academic

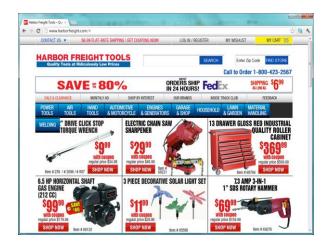

MATIONAL INSTRUMENTS




T

J

Controls, Mechatronics, and Robotics Do Engineering: On One Platform from Concept to Proof



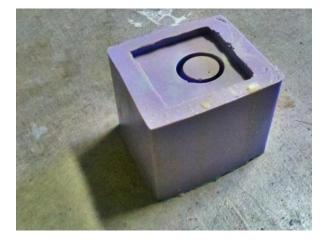
ni.com/academic/controls

Meghan Kerry Product Marketing Manager

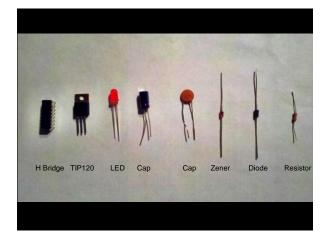
Mechanical Prototyping

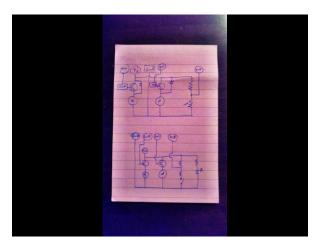
Do Engineering | ni.com/academic

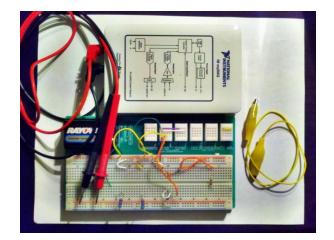






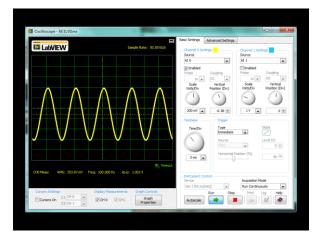





Electronic Prototyping

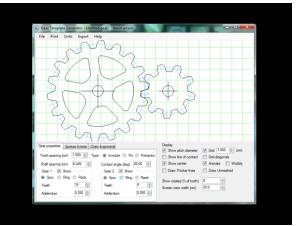
Do Engineering | ni.com/academic

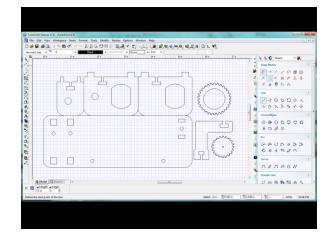
MATIONAL INSTRUMENTS

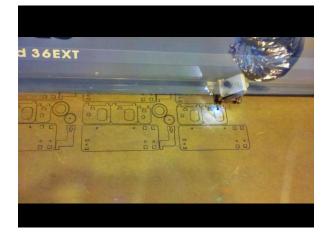


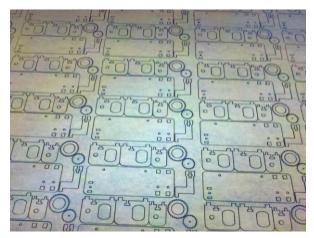
LabVIE	W	1	1.564	6 kHz
Waveform Setter	Tequency	h	plitude	DC Offset
~ (10.0 -1	0.00 🕀 V
лл ₅₀₀	1.5646k 🔄 H		v Cyde 50 (0) %	None -
Sweep Settings Start Frequency 100 0 H		ency St	ep 100 💿 Hz	Step Interval
Instrument Cont Device Dev1 (Hill myDA		Signal Ro		
Manual Mode		Run	Sweep Sta	

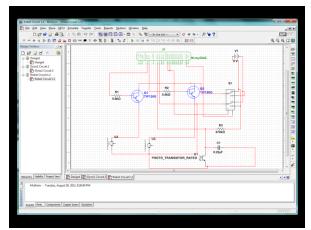


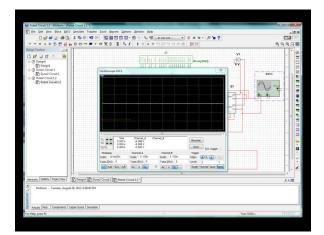

LabVIEW	Detected Fundamental Fundamental Frequency		Input Sett Source Ch AI 0		Voltage Range +/- 10V
-15			FFT Settin		Averaging
-20			Frequenc	40000 (0)	RMS .
-25			Resolution	(loes)	Weighting
[-30- <u> </u>]				400	Exponential .
3-35			Window		# of Averages
			None		S 🔄
P-45-			Tripper Se	Hiner	
-50			Type		Slope
			Immediate		
			Source		Level (V)
-65-			TRIG	¥	0 (4)
	10000 15000 20000	25000 30000 35000			
Power Spectrum 🐨		12) %) 0.09 SINAD (d8) 43.	- Frequenc	y Display Mode	Averaging
0.5 0 0 0		5) 0.09 SINAD (88) 43.	dB dB	RMS	Restart
S IN A A	ΔΔΔΔΙ	MAAAA			
1 / V V V		VIVVVVV	Scale Sett		
P -0.5			Auto	Maximum 0.0	Minimum 0.000 (4)
-1.0	02 0.004	0.006 0.008	0.009987		
	302 0.004 Time (s)			t Control	
Vpk (V) 0.50		1 1 2	12 10 Device		Acquisition Mode
		Sample Rate: 80.	00 kS/s Dev1 (NE	myDAQ) 💌	Run Continuously
Cursor Settings			Run	Stop	Print Log Help
Cursors On C1 Real	C2 Real		losition ⊕ ⊕ Right ■		2 0

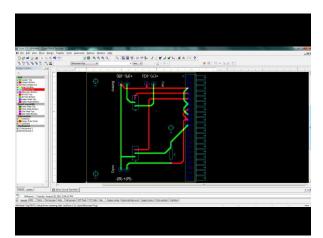



Do Engineering | ni.com/academi

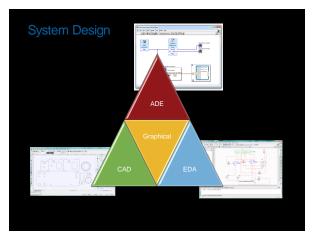


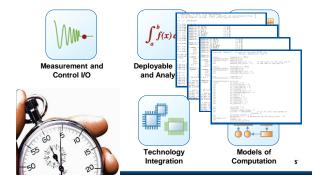











Programming

Do Engineering | ni.com/academic

MATIONAL INSTRUMENTS

Elements of Engineering Systems

Compatible Elements

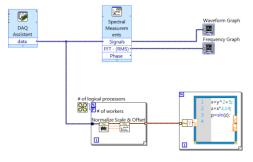
Measurement and Control I/O

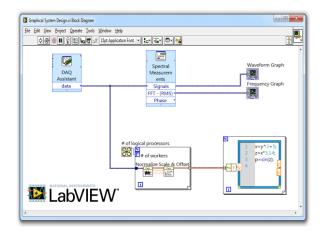
Do Engineering | ni.com/academic

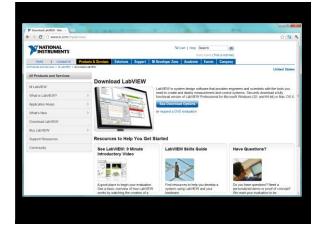
Normalize Scale & Offset

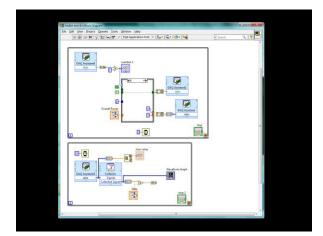
1

Deployable Math

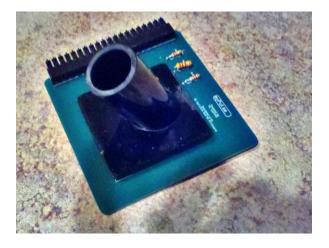

Technology Integration




User Interface



Easily Combined



\$	15pt Application Font 🔻 🗫 🎰 🥵	9•	• Sea	rch 🤍 🦻
Home	2.5	Votlage [V Current [A] C	Calculated [W] Simulated [V	W] Actual [W]
Real World	1.5- 			
Theory	0.5-			
Problems Check	-0.5-1 90 Time			
Calibrate	25 25	30 40 50	5- Load	(
Acquire	Voltage [V] Current [A]	RPM 80	4- 1.45- 1.4- 3- 1.35-	Record Valu Clear Table
See Code	Voltage [V] Current [A]	×100	1.3- 2- 1.25-	Save Data
Help	Total Power Generated (mW-min)		1.2- 1.15- 0- 4 1.1-	User Name

Applications

Do Engineering | ni.com/academic


MATIONAL INSTRUMENTS

CERN: MedAustron

Example: glandula parotid cancer

Photons 2 fields

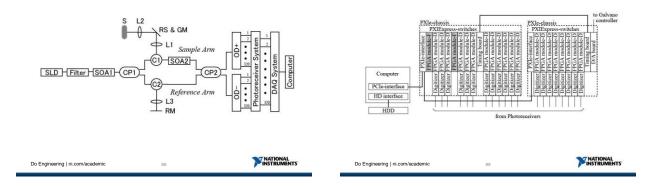
Courtesy: University clinic for radiotherapy and radio-biology, AKH Vienna, Austria

86

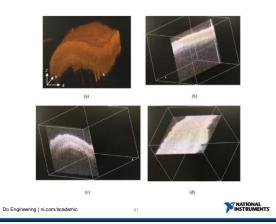
Do Engineering | ni.com/academic

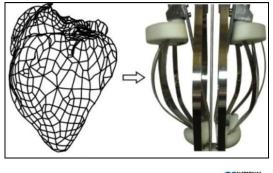
MATIONAL INSTRUMENTS

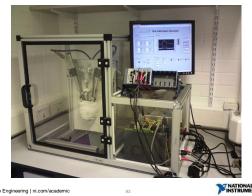
Application Notes


- Particle accelerator used for cancer therapy without damaging healthy tissue Wide energy range from 60 MeV to 800 MeV per nucleon with selectable beam energy in steps of 0.1 MeV
- 300,000 settings for the beam based on particle type, ion source, beam line, energy level, beam dimension, and spill length
- Concurrent beam control and reconfiguration in less than 250 msec Reconfigure the software on the FPGA for the next cycle while current beam is
- generated
- Distributed control system synchronously generates magnetic fields for 300 magnets by generating waveforms for power converters in real time at 2 kHz
- Second any generating waveforms for power converters in real time at 2 kHz
 Power converter synchronization at the microsecond level to generate/control the beam Power converters distributed over 800 m2 in access controlled area
- 500 beam cycles with different beam energies for a single medical irradiation session of about 2 minutes duration
- More than 20,000 shared variables for control, configuration, and monitoring · Solution completed in time because the researchers did not need to learn VHDL

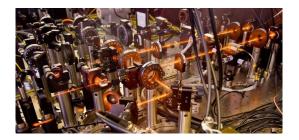

87


Do Engineering | ni.com/academic

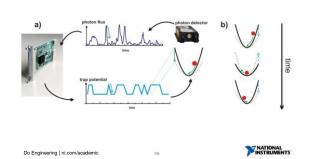

Optical Coherence Tomography

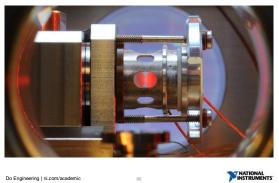


Heart Assist


92

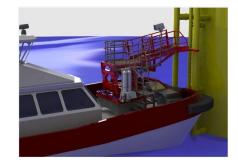
Do Engineering | ni.com/academic

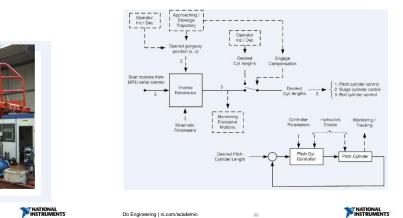



Do Engineering | ni.com/academic

Freezing an Atom

Do Engineering | ni.com/academic 94




95

Do Engineering | ni.com/academic

Wave Motion Cancellation

Do Engineering | ni.com/academic

Do Engineering | ni.com/academic 98

UC San Diego Multi-modal treaded rover

Do Engineering | ni.com/academic

•ME

4

ALEUP - Paulo

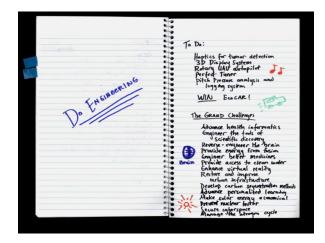
-

i.

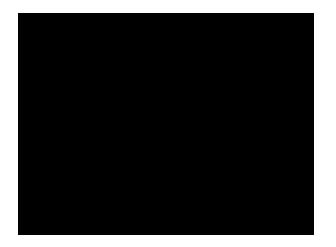
1 |0.3

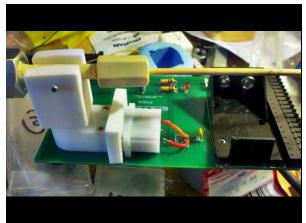
case I, svepe, mea = 1 otherwise Nicele surge i surge, mea = 1

$$\label{eq:construction} \begin{split} cb &= constructions (Constructions) (Constructions$$


litle	Controlling a Hydraulic Motion Compensated Gangway to Access Offshore Wind Turbines					
luthor	Andrew Clegg - Industrial Systems & Control LTD, UK					
Challenge						
	Creating a system to safely transfer personnel & equipment to offshore wind turbines in rolling seas & bad weather					
Solution	Using LabVIEW & cBIO to develop a movable gangway with an algorithm using boat motions to provide required hydraulic cylinder lengths to maintain position					
	wind turbines located further offshore, sea conditions become adverse					
	transferring personnel to sea based wind turbines for maintenance					
	moveable eaneway mounted on hydraulically actuated base on beat front					
	moveable gangway mounted on hydrauncally actuated base on boat front up & down oitch cylinder, forward & back surise cylinder, port/starboard roll cylinder					
	op & down pick cylinder, forward & back sorge cylinder, portystarboard roll cylinder					
	Used LVRT. FPGA & MathScript RT modules					
	did dynamic simulations to test control strat & hydraulic specs to meet perf tareets					
	sw emulator to test algorithm functionality					
	pwitched to real system to explore control loop performance for different loads, size, speed of motions, orientations //O & control algorithm on cRiO					
	Motion Reference Unit measures vessel motion, transmits positions & angles via serial link to MPU use mathscript nodes in LV for complex algorithms					
	Inverse kinematics transforms motion plan into joint actuator trajectories					
	calculate cylinder lengths & maintain gangway tip fixed in space					
	real time cascade control with feedforward & nonlinear compensation					
	cylinder length error for simulation & real testing showed simulation was reasonable rep of final system					
	development, implementation & factory testing took a little more than a year					
	sea trials confirm that range of motion compensation meets expectations from final factory testing					
	10 TATIONAL					

You have unprecedented access to the...


- · Theory
- Tools
- Materials
- Systems
- Instrumentation


• То...

Do Engineering | ni.com/academic 10 3

